Efficient sparse matrix-vector multiplication on cache-based GPUs
Sparse matrix-vector multiplication is an integral part of many scientific algorithms. Several studies have shown that it is a bandwidth-limited operation on current hardware. On cache-based architectures the main factors that influence performance are spatial locality in accessing the matrix, and t...
| Szerzők: | |
|---|---|
| Dokumentumtípus: | Könyv része | 
| Megjelent: | IEEE Communications Society
        
      Piscataway (NJ)    
    
      2012 | 
| Sorozat: | Innovative Parallel Computing (InPar), 2012 | 
| Tárgyszavak: | |
| mtmt: | 2724105 | 
| Online Access: | https://publikacio.ppke.hu/1901 | 
| Tartalmi kivonat: | Sparse matrix-vector multiplication is an integral part of many scientific algorithms. Several studies have shown that it is a bandwidth-limited operation on current hardware. On cache-based architectures the main factors that influence performance are spatial locality in accessing the matrix, and temporal locality in re-using the elements of the vector. © 2012 IEEE. | 
|---|---|
| Terjedelem/Fizikai jellemzők: | 12 1-12 | 
| ISBN: | 9781467326322 |