A Kinetic Finite Volume Discretization of the Multidimensional PIDE Model for Gene Regulatory Networks

In this paper, a finite volume discretization scheme for partial integro-differential equations (PIDEs) describing the temporal evolution of protein distribution in gene regulatory networks is proposed. It is shown that the obtained set of ODEs can be formally represented as a compartmental kinetic...

Full description

Bibliographic Details
Main Authors: Vághy Mihály András
Otero-Muras I
Pájaro M
Szederkényi Gábor
Format: Article
Published: 2024
Series:BULLETIN OF MATHEMATICAL BIOLOGY 86 No. 2
Subjects:
doi:10.1007/s11538-023-01251-3

mtmt:34527228
Online Access:https://publikacio.ppke.hu/2739

MARC

LEADER 00000nab a2200000 i 4500
001 publ2739
005 20250710155310.0
008 250710s2024 hu o 0|| Angol d
022 |a 0092-8240 
024 7 |a 10.1007/s11538-023-01251-3  |2 doi 
024 7 |a 34527228  |2 mtmt 
040 |a PPKE Publikáció Repozitórium  |b hun 
041 |a Angol 
100 1 |a Vághy Mihály András 
245 1 2 |a A Kinetic Finite Volume Discretization of the Multidimensional PIDE Model for Gene Regulatory Networks  |h [elektronikus dokumentum] /  |c  Vághy Mihály András 
260 |c 2024 
490 0 |a BULLETIN OF MATHEMATICAL BIOLOGY  |v 86 No. 2 
520 3 |a In this paper, a finite volume discretization scheme for partial integro-differential equations (PIDEs) describing the temporal evolution of protein distribution in gene regulatory networks is proposed. It is shown that the obtained set of ODEs can be formally represented as a compartmental kinetic system with a strongly connected reaction graph. This allows the application of the theory of nonnegative and compartmental systems for the qualitative analysis of the approximating dynamics. In this framework, it is straightforward to show the existence, uniqueness and stability of equilibria. Moreover, the computation of the stationary probability distribution can be traced back to the solution of linear equations. The discretization scheme is presented for one and multiple dimensional models separately. Illustrative computational examples show the precision of the approach, and good agreement with previous results in the literature. 
650 4 |a Biokémia 
650 4 |a Immunológia 
650 4 |a Farmakológia és gyógyszerészet 
700 0 2 |a Otero-Muras I  |e aut 
700 0 2 |a Pájaro M  |e aut 
700 0 2 |a Szederkényi Gábor  |e aut 
856 4 0 |u https://publikacio.ppke.hu/id/eprint/2739/1/kinetic2024.pdf  |z Dokumentum-elérés