Efficient sparse matrix-vector multiplication on cache-based GPUs

Sparse matrix-vector multiplication is an integral part of many scientific algorithms. Several studies have shown that it is a bandwidth-limited operation on current hardware. On cache-based architectures the main factors that influence performance are spatial locality in accessing the matrix, and t...

Full description

Bibliographic Details
Main Authors: Reguly István Zoltán
Giles M
Format: Book part
Published: IEEE Communications Society Piscataway (NJ) 2012
Series:Innovative Parallel Computing (InPar), 2012
Subjects:
mtmt:2724105
Online Access:https://publikacio.ppke.hu/1901

MARC

LEADER 00000naa a2200000 i 4500
001 publ1901
005 20241212160804.0
008 241212s2012 hu o 0|| Angol d
020 |a 9781467326322 
024 7 |a 2724105  |2 mtmt 
040 |a PPKE Publikáció Repozitórium  |b hun 
041 |a Angol 
100 1 |a Reguly István Zoltán 
245 1 0 |a Efficient sparse matrix-vector multiplication on cache-based GPUs  |h [elektronikus dokumentum] /  |c  Reguly István Zoltán 
260 |a IEEE Communications Society  |b Piscataway (NJ)  |c 2012 
300 |a 12 
300 |a 1-12 
490 0 |a Innovative Parallel Computing (InPar), 2012 
520 3 |a Sparse matrix-vector multiplication is an integral part of many scientific algorithms. Several studies have shown that it is a bandwidth-limited operation on current hardware. On cache-based architectures the main factors that influence performance are spatial locality in accessing the matrix, and temporal locality in re-using the elements of the vector. © 2012 IEEE. 
650 4 |a Műszaki és technológiai tudományok 
700 0 1 |a Giles M  |e aut 
856 4 0 |u https://publikacio.ppke.hu/id/eprint/1901/1/Efficient_sparse_matrix-vector_multiplication_on_cache-based_GPUs.pdf  |z Dokumentum-elérés