Design of a 40-nm CMOS integrated on-chip oscilloscope for 5-50 GHz spin wave characterization

Spin wave (SW) devices are receiving growing attention in research as a strong candidate for low power applications in the beyond-CMOS era. All SW applications would require an efficient, low power, on-chip read-out circuitry. Thus, we provide a concept for an on-chip oscilloscope (OCO) allowing par...

Full description

Bibliographic Details
Main Authors: Egel E
Csaba György
Dietz A
Breitkreutz-von Gamm S
Russer J
Russer P
Kreupl F
Becherer M
Format: Article
Published: 2018
Series:AIP ADVANCES 8 No. 5
Subjects:
mtmt:3400175
Online Access:https://publikacio.ppke.hu/1835

MARC

LEADER 00000nab a2200000 i 4500
001 publ1835
005 20241129102823.0
008 241129s2018 hu o 0|| Angol d
022 |a 2158-3226 
024 7 |a 3400175  |2 mtmt 
040 |a PPKE Publikáció Repozitórium  |b hun 
041 |a Angol 
100 1 |a Egel E 
245 1 0 |a Design of a 40-nm CMOS integrated on-chip oscilloscope for 5-50 GHz spin wave characterization  |h [elektronikus dokumentum] /  |c  Egel E 
260 |c 2018 
490 0 |a AIP ADVANCES  |v 8 No. 5 
520 3 |a Spin wave (SW) devices are receiving growing attention in research as a strong candidate for low power applications in the beyond-CMOS era. All SW applications would require an efficient, low power, on-chip read-out circuitry. Thus, we provide a concept for an on-chip oscilloscope (OCO) allowing parallel detection of the SWs at different frequencies. The readout system is designed in 40-nm CMOS technology and is capable of SW device characterization. First, the SWs are picked up by near field loop antennas, placed below yttrium iron garnet (YIG) film, and amplified by a low noise amplifier (LNA). Second, a mixer down-converts the radio frequency (RF) signal of 5 - 50 GHz to lower intermediate frequencies (IF) around 10 - 50 MHz. Finally, the IF signal can be digitized and analyzed regarding the frequency, amplitude and phase variation of the SWs. The power consumption and chip area of the whole OCO are estimated to 166.4 mW and 1.31 mm(2), respectively. (C) 2017 Author(s). 
650 4 |a Csillagászat 
650 4 |a Nanotechnológia 
700 0 1 |a Csaba György  |e aut 
700 0 1 |a Dietz A  |e aut 
700 0 2 |a Breitkreutz-von Gamm S  |e aut 
700 0 2 |a Russer J  |e aut 
700 0 2 |a Russer P  |e aut 
700 0 2 |a Kreupl F  |e aut 
700 0 2 |a Becherer M  |e aut 
856 4 0 |u https://publikacio.ppke.hu/id/eprint/1835/1/aipadvances2018.pdf  |z Dokumentum-elérés