A monolithic 3D integrated nanomagnetic co-processing unit

As CMOS scaling becomes more and more challenging there is strong impetus for beyond CMOS device research to add new functionality to ICs. In this article, a promising technology with non-volatile ferromagnetic computing states - the so-called Perpendicular Nanomagnetic Logic (pNML) - is reviewed. A...

Full description

Bibliographic Details
Main Authors: Becherer M
Breitkreutz-V Gamm S
Eichwald I
Žiemys G
Kiermaier J
Csaba György
Schmitt-Landsiedel D
Format: Article
Published: 2016
Series:SOLID-STATE ELECTRONICS 115
Subjects:
mtmt:3127676
Online Access:https://publikacio.ppke.hu/1825

MARC

LEADER 00000nab a2200000 i 4500
001 publ1825
005 20241128151246.0
008 241128s2016 hu o 0|| Angol d
022 |a 0038-1101 
024 7 |a 3127676  |2 mtmt 
040 |a PPKE Publikáció Repozitórium  |b hun 
041 |a Angol 
100 1 |a Becherer M 
245 1 2 |a A monolithic 3D integrated nanomagnetic co-processing unit  |h [elektronikus dokumentum] /  |c  Becherer M 
260 |c 2016 
300 |a 74-80 
490 0 |a SOLID-STATE ELECTRONICS  |v 115 
520 3 |a As CMOS scaling becomes more and more challenging there is strong impetus for beyond CMOS device research to add new functionality to ICs. In this article, a promising technology with non-volatile ferromagnetic computing states - the so-called Perpendicular Nanomagnetic Logic (pNML) - is reviewed. After introducing the 2D planar implementation of NML with magnetization perpendicular to the surface, the path to monolithically 3D integrated systems is discussed. Instead of CMOS substitution, additional functionality is added by a co-processor architecture as a prospective back-end-of-line (BEOL) process, where the computing elements are clocked by a soft-magnetic on-chip inductor. The unconventional computation in the ferromagnetic domain can lead to highly dense computing structures without leakage currents, attojoule dissipation per bit operation and data-throughputs comparable to state-of-the-art high-performance CMOS CPUs. In appropriate applications and with specialized computing architectures they might even circumvent the bottleneck of time-consuming memory access, as computation is inherently performed with non-volatile computing states. © 2015 Elsevier Ltd. 
650 4 |a Villamosmérnöki tudományok: félvezetők, alkatrészek, rendszerek 
650 4 |a Elektronika, fotonika 
650 4 |a Optoelektronika 
700 0 2 |a Breitkreutz-V Gamm S  |e aut 
700 0 2 |a Eichwald I  |e aut 
700 0 2 |a Žiemys G  |e aut 
700 0 2 |a Kiermaier J  |e aut 
700 0 2 |a Csaba György  |e aut 
700 0 2 |a Schmitt-Landsiedel D  |e aut 
856 4 0 |u https://publikacio.ppke.hu/id/eprint/1825/1/solid-stateelectronics2016.pdf  |z Dokumentum-elérés