D19S mutation of the cationic, cysteine-rich protein PAF novel insights into its structural dynamics, thermal unfolding and antifungal function /

The cysteine-rich, cationic, antifungal protein PAF is abundantly secreted into the culture supernatant of the filamentous Ascomycete Penicillium chrysogenum. The five beta-strands of PAF form a compact beta-barrel that is stabilized by three disulphide bonds. The folding of PAF allows the formation...

Full description

Bibliographic Details
Main Authors: Sonderegger Christoph
Fizil Ádám
Burtscher Laura
Hajdu Dorottya Zsuzsanna
Muńoz Alberto
Gáspári Zoltán
Read Nick D.
Batta Gyula
Marx Florentine
Muñoz Alberto
Format: Article
Published: 2017
Series:PLOS ONE 12 No. 1
Subjects:
mtmt:3166038
Online Access:https://publikacio.ppke.hu/1475

MARC

LEADER 00000nab a2200000 i 4500
001 publ1475
005 20241024143823.0
008 241024s2017 hu o 0|| Angol d
022 |a 1932-6203 
024 7 |a 3166038  |2 mtmt 
040 |a PPKE Publikáció Repozitórium  |b hun 
041 |a Angol 
100 1 |a Sonderegger Christoph 
245 1 0 |a D19S mutation of the cationic, cysteine-rich protein PAF  |h [elektronikus dokumentum] :  |b novel insights into its structural dynamics, thermal unfolding and antifungal function /  |c  Sonderegger Christoph 
260 |c 2017 
490 0 |a PLOS ONE  |v 12 No. 1 
520 3 |a The cysteine-rich, cationic, antifungal protein PAF is abundantly secreted into the culture supernatant of the filamentous Ascomycete Penicillium chrysogenum. The five beta-strands of PAF form a compact beta-barrel that is stabilized by three disulphide bonds. The folding of PAF allows the formation of four surface-exposed loops and distinct charged motifs on the protein surface that might regulate the interaction of PAF with the sensitive target fungus. The growth inhibitory activity of this highly stable protein against opportunistic fungal pathogens provides great potential in antifungal drug research. To understand its mode of action, we started to investigate the surface-exposed loops of PAF and replaced one aspartic acid at position 19 in loop 2 that is potentially involved in PAF active or binding site, with a serine (Asp19 to Ser19). We analysed the overall effects, such as unfolding, electrostatic changes, sporadic conformers and antifungal activity when substituting this specific amino acid to the fairly indifferent amino acid serine. Structural analyses revealed that the overall 3D solution structure is virtually identical with that of PAF. However, PAF(D19S) showed slightly increased dynamics and significant differences in the surface charge distribution. Thermal unfolding identified PAF(D19S) to be rather a two-state folder in contrast to the three-state folder PAF. Functional comparison of PAF(D19S) and PAF revealed that the exchange at residue 19 caused a dramatic loss of antifungal activity: the binding and internalization of PAF(D19S) by target cells was reduced and the protein failed to trigger an intracellular Ca2+ response, all of which are closely linked to the antifungal toxicity of PAF. We conclude that the negatively charged residue Asp19 in loop 2 is essential for full function of the cationic protein PAF. 
650 4 |a Biológiai kémia 
650 4 |a Molekuláris biológia 
700 0 1 |a Fizil Ádám  |e aut 
700 0 1 |a Burtscher Laura  |e aut 
700 0 1 |a Hajdu Dorottya Zsuzsanna  |e aut 
700 0 1 |a Muńoz Alberto  |e aut 
700 0 1 |a Gáspári Zoltán  |e aut 
700 0 1 |a Read Nick D.  |e aut 
700 0 1 |a Batta Gyula  |e aut 
700 0 1 |a Marx Florentine  |e aut 
700 0 1 |a Muñoz Alberto  |e aut 
856 4 0 |u https://publikacio.ppke.hu/id/eprint/1475/1/D19SMutationoftheCationic.pdf  |z Dokumentum-elérés